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NMR relaxation data and those from many other physical mea- of distributions of relaxation times. If no constraints are
surements are sums of exponentially decaying components, com- applied, such as smoothing or non-negativity, then these
bined with some unavoidable measurement noise. When decay data distributions are not even bounded.
are inverted in order to give quasi-continuous distributions of relax- Many authors have discussed the inversion problem (1–
ation times, some smoothing of the distributions is normally imple- 12) and given further references. Provencher (1) has pro-
mented to avoid excess variation. When the same distribution has

vided an extensive discussion, and his CONTIN programsa sharp peak and a much broader peak or a ‘‘tail,’’ as for many
are widely used. Most inversion schemes apply both smooth-porous media saturated with liquids, an inversion program using a
ing and other restrictions to prevent excessive detail in de-fixed smoothing coefficient may broaden the sharp peak and/or
rived distributions of relaxation times. The non-negativebreak the wide peak or tail into several separate peaks, even if the
(NN) constraint is usually applied on physical grounds, butcoefficient is adaptively chosen in accord with the noise level of

the data. We deal with this problem by using variable smoothing, it also serves to prevent wild oscillations in distributions,
determined by iterative feedback in such a way that the smoothing since an unnecessary but permissible high point is usually
penalty is roughly constant. This uniform-penalty (UP) smoothing nearly canceled by a nearby negative point when NN is not
can give sharp lines, not broadened more than is consistent with the applied. Another restriction is to limit the number of maxima
noise, and in the same distribution it can show a tail decades long to a small number such as one or two (1) . This, too, can often
without breaking it up into several peaks. The noise level must be

eliminate spurious peaks and the undershoot that results fromknown approximately, but it can be determined more than ade-
the smoothing of large narrow peaks. Of course, these re-quately by a preliminary inversion. The same iterative procedure
strictions may or may not be appropriate to the data. Mostis used to implement constraints such as non-negative (NN) or
inversion processes minimize some function, usually mean-monotonic-from-peak (MT). The significance of an additional re-
square, of the residuals plus some penalty function of thesolved peak may be tested by finding the cost of using MT to force

a unimodal solution. A bimodal constraint can be applied. Decay output distribution, together with constraints such as NN. A
data representing sharp lines in contact with broad features can seldom used alternative is to impose minimum variation or
require substantial computing time and some controls to stabilize variation-squared (5) , subject to adequate fit to the data.
the iterative sequence. However, UP can be made to function If the relaxation data have low noise level and are known
smoothly for a very wide variety of decay curves, which can be from physical considerations to correspond to a small num-
processed without adjustment of parameters, including the dimen-

ber of very well separated relaxation times, then even graphi-sionless smoothing parameters. Extensive testing has been done with
cal peeling of longest components from semi-log plots canartificial data. Examples are shown for artificial data, biological
give times and amplitudes. Likewise, a nonlinear search bytissues, ceramic technology, and sandstones. Expressions are given
computer can give these components. However, if the com-relating noise level to line width and for significance of increase or
ponents are not well separated, or if there is not valid adecrease in error of fit. q 1998 Academic Press

priori knowledge of the number of components, it is easy
to misunderstand and misinterpret the computed results.

Another case is that of distributions with small numbersINTRODUCTION
of well-separated peaks of finite width. Again, we may or
may not have a priori reasons to know that a distribution isNuclear magnetic relaxation data and many other kinds
of this form. If the peaks are well separated, most inversionof physical data represent sums or distributions of decaying
methods can give positions (relaxation times) and areasexponential functions. The decay curves and the correspond-
(corresponding signal amplitudes) . If the peaks have similaring distributions of exponential components vary greatly in
widths on a logarithmic time scale, then most methods forcharacter and complexity, but even the simplest relaxation
inversion of relaxation data to get distributions of relaxationdata, with even a small amount of the unavoidable measure-

ment noise, can be represented adequately by a wide variety times will give also the correct peak widths if the data noise
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66 BORGIA, BROWN, AND FANTAZZINI

is sufficiently low and if the inverted data are smoothed to quences, are inherently at equal intervals in t . These data
can be inverted with UP smoothing also, but some additionala degree appropriate to the noise level and peak width. If

two peaks differ greatly in width, then it is not possible to bookkeeping is required.
We wish to compute a quasi-continuous distribution ofchoose a single smoothing parameter for the distribution that

will not broaden the narrower peak and/or break the wider relaxation times T in the form of a set of discrete points
(usually from 80 to 110) covering about the same time rangepeak up into apparent multiple peaks.

The inversion problem is still more difficult when the as the data and equally spaced in Q Å ln T . This gives
spacings in q (data points) and Q (computed points) of theresolution of peaks is marginal, especially when one peak

is much larger than another. An especially difficult form of order of 0.1 Np (Neper) . As will be seen later, this spacing
is comparable to the minimum measurable peak half-widthrelaxation time distribution is found for fluids in complex

porous media, such as brine in sandstone rocks, an important for a noise level of 0.25% of the integrated signal from the
peak. To permit focus on the use of UP we will discuss onlyproblem in the oil industry. A common form of distribution

consists of a relatively high peak with a very long low tail good data sets in the above form, excluding data equally
spaced in time and avoiding data that do not adequatelyextending to shorter relaxation times, often to times as short

as a hundredth or a thousandth that of the peak. Such a tail, cover the ranges of relaxation times.
although very low, may have sufficient area to represent a

Least-Squares Inversion with Smoothingsubstantial fraction of the initial signal (13, 14) .
For several years we have dealt with this problem ‘‘manu- As we have said, many very different distributions of

ally’’ (13) by specifying widely different smoothing param- relaxation times T can give adequate fits to a set of good
eters for the relatively sharp peak and the long low tail. This relaxation data. Very large amounts of detail can be intro-
procedure can also prevent the undershoot usually found at duced in a distribution while still giving a good fit to the
the sides of sharp peaks, which can give automatic minima data. In fact, by introducing a lot of spurious detail it is
between peaks and adjacent lower and broader features. The possible to cancel some of the random noise that is part of
obvious drawback is that the choice of smoothing parameters all instrumental data sets. We may choose among fits with
is highly subjective. A welcome feature of the manually different amounts or types of detail on the basis of a priori
adjusted smoothing is that, with good data, the need for knowledge, but, in most cases, we should probably choose
the application of a non-negative constraint may be greatly what is in some sense the minimum amount of detail de-
reduced or eliminated. manded by the data.

To reduce this subjectivity we have introduced negative We wish to approximate a set of relaxation data si , taken
feedback in the smoothing of the computed distributions of at times ti equally spaced in qi Å ln ti , by a sum of M
relaxation times to maintain roughly the same smoothing exponential components,
penalty for each computed point in a distribution. Instead of
using a uniform smoothing coefficient, we vary the coeffi-

si É g0 / ∑
M

kÅ1

gk exp(0ti /Tk) å xi , [1]cient with relaxation time so as to keep the smoothing pen-
alty roughly uniform. In this process the smoothing coeffi-
cient may vary by as much as nine decades, thereby avoiding

where Tk are the relaxation times equally spaced in Q Å lnthe broadening of a very narrow peak and also avoiding
T and covering about the same range as ti . The distributionbreaking a wide feature into several apparent peaks. In the
of amplitudes at relaxation times Tk (on the logarithmic timefollowing we will first discuss the inversion problem and
scale) is gk , and g0 , the value of the signal at infinite time,approaches to smoothing and then describe uniform-penalty
is also a regression parameter. The computed fit to the data(UP) smoothing.
is xi , as shown in Eq. [1] . To avoid excessive detail a penalty
function is added to the squared error of fit, and their sum

INVERSION AND SMOOTHING is minimized. Common penalty functions are squares of am-
plitude, slope (first difference) , or curvature (second differ-

Relaxation Data ence). The function to be minimized is then of the form

Most of our work with UP has been with longitudinal
relaxation (T1) data with random noise levels between 1% ∑

N

iÅ1

(g0 / ∑
M

kÅ1

gk exp(0ti /Tk) 0 si )2

and 0.05% of the relaxing signal and with data (typically
127 points) taken at equal intervals in q Å ln t , where t is

/ A ∑
M

kÅ1

g 2
k / D ∑

M01

kÅ1

(gk/1 0 gk)2

data time, usually over ranges of more than four decades.
Data taken at equal intervals in q can best represent detail
in different parts of wide distributions of relaxation times / C ∑

M01

kÅ2

(gk01 0 2gk / gk/1) 2 , [2]
T , but transverse relaxation data (T2) , often by CPMG se-
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67MULTIEXPONENTIAL DECAY DATA

smoothing parameter C when a set of data has both sharp
and broad features. Distributions of relaxation times are
shown (as amount of initial signal per Neper of relaxation
time) for different inversions of a single set of artificial data
computed from a noise-free input distribution, or model, to
which Gaussian random noise with unit rms amplitude has
been added. In all cases the NN constraint, which often
has a physical basis, is applied. The input distribution is a
Gaussian peak with 0.1 Np half-width plus a triangular tail,
contributing one-third of the initial signal and tapering to
zero at short relaxation times. The smoothing effect of a
given C value depends on the signal-to-noise ratio S /N and
on the spacing of both the data points and the computed
points. We will specify the degree of smoothing by a parame-
ter a, which is inversely proportional to C (see later, below
Eq. [9]) and has a smoothing effect that is not dependent
(as for C) on the spacing of input data or of computed output
points. To get from the minimization of Eq. [2] an adequate
fit to the artificial data, represented in Fig. 1 and having
known pseudo-random noise, it is necessary to use a Å 108.
This still broadens the sharp peak somewhat, but it also
breaks the tail into a number of separate peaks. In particular,
it leaves a substantial interval of baseline between the real
peak and the first spurious peak. The long tail needs many
orders of magnitude more smoothing, and the transition
needs to be abrupt. Even with a Å 100 the tail appears as
a resolved separate peak, and the real peak is drastically

FIG. 1. Model distribution for artificial relaxation data and distributions broadened.
computed with fixed smoothing parameters a ( inversely proportional to the It may be noted that there are no spurious peaks to the
smoothing coefficients C) . The artificial relaxation data are computed from

right of the input peak. The NN constraint can prevent thethe input distribution (model) , which consists of a Gaussian line with
undershoot, but the tail of the Gaussian is lost. NN alsointegrated amplitude 1000, centered at 500 ms and with half-width (at

e01/2 1 peak) 0.1 Np (Neper) , plus a triangular tail with integrated ampli- cancels zero-mean noise in the input time-domain data in
tude 500 (representing an important one-third of the total initial signal) relaxation-time regions of the computed fit amplitudes with
and tapering from the peak at 500 ms to zero at 0.5 ms. Pseudo-random little or no true signal; if the computed fit amplitude cannot
noise with rms value 1.0 is added to the 127 artificial data points. The input

go negative, it cannot go positive and retain the zero mean.model distribution is the higher solid curve in the full view (a) and the
To the left of the peak in Fig. 1, NN cannot prevent theinner peak with triangular tail in the expanded view (b). The dashed curve

in both views is for a constant smoothing parameter a Å 108. The lower undershoot and oscillatory behavior, because the output can
solid curve in the full view (a) , showing a wide peak and oscillatory tail go below its correct value without going negative.
in the expanded view (b), is for a Å 105. The remaining curve, shown by In a sense, NN is overworked in many inversion proce-
the unconnected computed points in both views, is for a Å 100. The

dures. When the expected distribution of relaxation timesinversion has 110 points spaced at É0.08 Np, and curvature smoothing is
consists of one or several resolved peaks of different, butapplied. The a Å 108 curve gives the correct noise value by slightly broad-

ening the peak and thereby incurring a small penalty, which is made up by not drastically different, widths, it may be possible to choose
excessive detail on the tail, permitting the cancellation of some of the added an a that will not broaden the narrowest peak excessively
noise. Note that each computed curve returns to the baseline to the left of and also not break a wider or lower peak into multiple peaks.
the ‘‘real’’ peak, appearing to give one or more separate additional peaks.

In this case NN can prevent the undershoot at the sides ofThe non-negative (NN) constraint is applied to the computed curves.
the peaks, sharpening the peaks and suppressing the noise.
In this use NN serves more to stabilize a computation than
to suppress measurable nonphysical features of the inputwhere A is the coefficient for amplitude smoothing, D (dif-

ference) for slope smoothing, and C (curvature) for curva- data, such as effects of amplifier nonlinearity or drift. The
results are often satisfactory when the conditions just men-ture smoothing (1, 9, 10, 13) . We do not include the g0 term

in the penalty function. Usually only one of the three kinds tioned are valid. However, there are many sources of relax-
ation data where the distributions of times do not consist ofof smoothing is used, and curvature smoothing is used in

the present work. a few isolated peaks.
Relaxation data for visually homogeneous brine-saturatedFigure 1 shows the consequences of inversion with a fixed
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68 BORGIA, BROWN, AND FANTAZZINI

tioned as available in CONTIN (1) , they appear not to be
widely used for NMR relaxation data. The acceptability of
the MT constraint can be tested by comparing the error of
fit with MT against that with NN and applying resolution
criteria, discussed later, to judge the significance of the extra
cost of MT in error of fit.

Just as NN can compensate for undersmoothing on por-
tions of distributions with noise but little or no signal, MT
can prevent undersmoothing on broad features, whether with
very little signal or with substantial signal. Of course, this
is useful only if the cost is not enough to prevent an adequate
fit to the data. Figure 2 shows the same artificial distribution
as Fig. 1. The stairstepped curve is computed with a fixed
a Å 108, using MT instead of NN. This gives a satisfactory
distribution so long as one does not try to interpret the stair-
steps. The use of MT prevents the extra peaks, but the trian-
gular part of the distribution is still undersmoothed.

The application of UP smoothing, to be described in a
later section, provides much stronger smoothing for the long
tail than for the sharp peak. In Fig. 2, the computed distribu-
tion using UP and NN cannot easily be distinguished from
the input distribution on the scales used in the figure. The
computation using UP but not using either NN or MT
(dashed lines) does show some undershoot on both sides of
the peak, with some consequent broadening of the peak, but
there is far less reliance on NN or MT than with fixed
smoothing parameter.

FIG. 2. Distributions computed from the same artificial relaxation data INVERSION WITH VARIABLE SMOOTHING
used in Fig. 1, with the model shown in both views as in Fig. 1. The lower
solid curve in the full view (a) , which has the stair-stepped tail in the

To introduce more equitable smoothing for sharp andexpanded view (b), is computed with a fixed smoothing parameter a Å
broad features we make A , D , and C in Eq. [2 ] variable,108 and with the monotonic-from-peak (MT) constraint instead of NN. A

third solid curve is shown in both views, which cannot be distinguished with subscript k , and move them inside the summations.
from the model on the scales shown here, for the distribution computed Although variable smoothing can be implemented for am-
with uniform-penalty (UP) smoothing (to be described below) along with plitude, slope, or curvature smoothing, we will discuss
NN. The dashed curve in both views is for UP without either NN or MT.

only curvature smoothing, which we have used for a num-Here, the undershoot can be seen on both sides of the peak, and the peak
ber of years. We have not tried the UP approach withis significantly broadened. However, most of the wild oscillation shown in

Fig. 1 is avoided by the variable smoothing coefficient in UP. amplitude or slope smoothing. The quantity to be mini-
mized is now

oilfield rocks are often compatible with unimodal (with re- ∑
N

iÅ1

(g0 / ∑
M

kÅ1

gk exp(0ti /Tk) 0 si )2

spect to Q Å ln T ) distributions from one to three or more
decades wide. There is a very wide variety of shapes, usually
with more detail in one region than another. There exist / ∑

M01

kÅ2

Ck(gk01 0 2gk / gk/1) 2 , [3]
examples with peaks with widths close to the minimum mea-
surable values at their particular noise levels but with tails
extending two or three decades. Thus, the artificial distribu- where Ck will be iteratively adjusted to be roughly recipro-

cal to the local curvature-squared (which itself depends ontion of Fig. 1 is not unlike some found for fluids in the pores
of rocks, although many rocks do not show peaks quite this the Ck) .

If the components gk , si , and xi make up the vectors gsharp.
Distributions from the artificial data of Fig. 1 can be im- (computed distribution, M / 1 components) , s (measured

noisy signal, N components) , and x (computed fit to theproved by applying a monotonic-from-peak (MT) constraint
instead of NN, forcing the computed distribution to be uni- signal, N components) , and if the components exp(0ti /Tk)

make up the N 1 (M / 1) matrix U , we have x Å Ug . Themodal. Although unimodal and bimodal constraints are men-
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69MULTIEXPONENTIAL DECAY DATA

first term in Eq. [3] is then g†U†Ug 0 2s†Ug / s†s , with second-difference-squared values found at k 0 1, k , or k /
1 from the previous iteration. That is, Ck for the next iterationthe last of these a constant. We let U†U Å W . This (M /

1) 1 (M / 1) matrix need be computed only once for the is inversely proportional to the largest second-difference-
squared found at k or a nearest neighbor. We can furtheriterative computation of g .

For the second (penalty) term in Eq. [3] we first find the improve appearance in many cases by using second-nearest
neighbors or points from an even wider window. However,contribution for unit Ck for a single k-value. This involves

gk01 , gk , and gk/1 . The curvature (second difference) at the a wide window interferes with implementing abrupt changes
in smoothing coefficient. It is also possible to use only slope-k th computed point is V(k )g , where V(k ) is an (M / 1) 1

(M / 1) matrix containing all zero elements except for the squared feedback (instead of curvature feedback) for curva-
ture smoothing. In this case it is necessary to use the highestsubmatrix
slope-squared over a window extending about 0.3 Np in
relaxation time both above and below the point k . A useful
compromise was found to be the use of both curvature andS0 0 0

1 02 1
0 0 0

D [4]
slope feedback, and for each k to use the highest values
found at the point or a nearest neighbor.

The smoothing coefficients Ck are coefficients of rigiditycentered at the k th diagonal point. The contribution to the
for the computed distributions. Therefore, the feedback tocurvature-squared is g†V(k )†V(k )g , where V(k )†V(k ) is a sym-
adjust the Ck to give roughly uniform penalty consists ofmetrical matrix containing all zero elements except for the
local compliance contributions from slope and curvature. Wesubmatrix
let ck be the maximum value of [(gl01 0 2gl / gl/1)
/D 2

Q]2 for l Å k 0 1, k , or k / 1. We likewise let pk

(pendenza: slope) be the maximum of [(gl/1 0 gl) /DQ]2S 1 02 1
02 4 02

1 02 1
D , [5]

for l Å k 0 1, k , or k / 1. The denominators, powers
of the output interval DQ in Q , make pk and ck discrete
approximations to the squares of first and second derivatives

centered at the k th diagonal element. We now form the of g(Q) and hence as nearly as possible independent of DQ .
matrix K (Krümmung: curvature) by multiplying each ma- These parameters from one iteration are used to give the
trix V(k )†V(k ) by Ck and summing the matrices for all k- Ck’s for the next.
values from 2 to M 0 1. The total curvature penalty is g†Kg .
Equation [3], and the quantity to be minimized, is now Balance between Smoothing and Noise
given by

The residuals term (left) and the penalty term (right) of
g†Wg 0 2s†Ug / s†s / g†Kg . [6] Eq. [3] should somehow be balanced in finding the quantity

to be minimized to get the distribution gk . We still need
We let s†U Å Y and minimize the above expression by global factors by which to multiply pk and ck to get Ck . We

setting the gradient with respect to g to zero, giving represent the compliance determined in one iteration in the
form

Wg / Kg Å Y ; g Å (W / K)01Y . [7]
a0 / appk / acck , [8]

FEEDBACK FOR UNIFORM PENALTY

where a0 , ap , and ac are constants that are not changed from
Feedback

one iteration to the next nor from one data set to the next.
The term a0 is a compliance floor, which should be smallTo have a strictly uniform penalty, that is, the same contri-

bution to the right side of Eq. [3] for each value of k , we enough that it would never lead to undersmoothing, but
which should be large enough to be a ‘‘seed’’ for the devel-would have to find a way to make Ck inversely proportional

to the square of the second difference. This can be done by opment of curvature in the iteration process.
For a good solution to good data the residuals term froma series of iterations, starting with a fixed Ck and for each new

iteration letting Ck be inversely proportional to the square of the minimization of Eq. [3] is primarily due to the noise-
squared. If R (rumore, Rauschen: noise) is the rms noise,the second difference from the previous iteration. This does

give adequate fits to relaxation data, but it tends to give the residuals term from Eq. [3] should be of the order of
NR 2 if the fit is good. We assume that, in the vicinity of adistributions consisting of straight-line segments, with too

much detail in the form of abrupt bends. This can be im- solution, the two terms in Eq. [3] should be comparable.
We need only proportionality, and we use proportionality toproved considerably by relaxing the uniform-penalty re-

quirement somewhat and using at each k the highest of the the density of points 1/Dq instead of to N , having in mind
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70 BORGIA, BROWN, AND FANTAZZINI

that data points well outside the range of relaxation times apply MT over short ranges of DQ in order to remove un-
physically sharp minima caused by undershoot.will not contribute much to variability in iterative approach

to a solution. We could include R 2 /Dq as a factor in Ck (and In some cases we have tried to deal with nonideal data
by imposing special constraints on the first and last pointswe would do this to deal with data equally spaced in time,

where Dq is not constant) . However, in our implementation or the first and last several points, but, as we have said, the
present discussion is focused on UP and is therefore limitedwe have instead normalized the input signal by dividing it
to good data with random noise only and with adequateby R

√
Dq , and we have included a factor of D02

q in Ck to
coverage of relaxation times.preserve the balance between noise and degree of smoothing.

This makes the screen display during a computation propor-
Convergencetional to an effective signal-to-noise ratio.

The amplitude is plotted as normalized signal per Np The iterative procedure for any combination of UP, NN,
of Q Å ln T . To approximate an integral of the form and MT does not necessarily converge. However, with rea-
* C(Q)(d 2g /dQ 2) 2dQ for the curvature penalty by a dis- sonable parameters, it usually does converge for data sets
crete sum, we include a factor of the step size DQ in the not including overlapping broad features and sharp lines and
coefficient Ck . We now have for many data sets that do. With both sharp and broad fea-

tures in contact it may take 30 or more iterations to settle
Ck Å [D 2

qD
3
Q(a0 / appk / acck)]01 . [9] to an approximate distribution with nearly constant error of

fit, but it may never settle to one exact solution. To stabilize
the iteration process at this stage (but not before) , we use,The symbol a (without subscript) will be used to indicate
for each k-value for the next iteration, the smaller of theexamples of fixed smoothing coefficient C , given in terms
newly computed Ck or the Ck that was used in the currentof a0 Å a and ap Å ac Å 0 by Eq. [9] .
iteration. It may be necessary also to suppress changes in the
smoothing coefficients Ck when a large undershoot (negativeCONSTRAINTS, CONVERGENCE, AND NOISE
point, to be suppressed in the next iteration) appears. This
can break a nonproductive cycle of iterations. Also in suchConstraints: NN and MT
cases, it may be necessary to terminate iteration when the

We use the same sequence of iterations to impose con- rms error of fit ceases to change significantly even if the
straints, such as NN and MT. For each negative gk in one changes in the Ck’s do not converge to zero. These controls
iteration we impose NN by adding a large number to the on the iterative process usually lead to a nearly steady state
k th diagonal element of V(k )†V(k ) to force the corresponding with substantially constant error of fit and without wandering
gk to be nearly zero in the next solution. By not forcing the appreciably from a region of nonconverging approximate
point exactly to zero, we retain knowledge of its sign, which solutions.
in some future iteration may cease to be negative, in which The computing time depends roughly on the cube of the
case the constraint for that point can be removed. number of computed points. Our computation is written in

Likewise, we can reduce the slope for a pair of points True Basic and run on a Pentium-90 computer, and we nor-
nearly to zero by multiplying the submatrix (analogous to mally compute 110 points on a distribution of relaxation
Eq. [5] for curvature) , times, plus signal at infinite time. For each iteration it is

necessary to invert a 111 1 111 matrix, which takes about
6 s. Each iteration takes about 12 s, so about 5 min is neededS 1 01

01 1D , [10] if 25 iterations are required. When very sharp features are
absent, computing time is much less. It should be noted,
however, that UP makes its greatest contribution when there

by a large number and centering it between the diagonal
are both broad and sharp features.

elements k and k / 1 of V(k )†V(k ) . We can impose MT for
sections of the computed distribution by reducing the slope Coefficients, Artificial Data, and Noise
nearly to zero when the slope is in the ‘‘wrong’’ direction.
Again, we retain knowledge of the sign by not forcing the The coefficient a0 in Eq. [9] should be chosen as large

as possible without undersmoothing the widest distributionsslope exactly to zero, and we can remove the constraint if
it ceases to be needed. of interest. This is not critical. We have determined tentative

values of ap and ac by setting one of them to zero and gettingWe have also used a hybrid MT and NN constraint to
allow a bimodal solution, where MT is applied before one reasonable fits to artificial data with the other while using a

window (see Feedback section) of {0.3 Np for determiningpeak and after the other, with NN applied between peaks.
An example of this is shown later, in connection with Fig. maximum compliance (pk or ck) to use for a given k-value.

Finally, we have made many computations with many forms6. Another use of MT, not illustrated in this work, is to
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of artificial data to select the a’s. Good results are obtained
with a0 Å 1000 (but smaller for very wide distributions with
low S /N) , apÅ 50, and acÅ 10. A wide variety of relaxation
data can be inverted, giving the right scatter due to noise
without changing the above a’s.

We generate artificial data with pseudo-random noise,
each noise point being obtained by subtracting 6 from the
sum of 12 independent samples of pseudo-random numbers
from a uniform distribution from 0 to 1, giving rms noise
1.0 and an approximately Gaussian distribution. In each case
we record for reference the actual rms noise for the individ-
ual set of N artificial data points on a relaxation curve. We
do not remove the mean, since our inversion computes the

FIG. 3. Noise only, with unit rms amplitude, inverted without NN, MT,value for infinite time. Even for sets of N Å 127 data points,
or UP (identified under Fig. 2) . The solid curve (a) is for a Å 1010 andthere can be relative scatter (with respect to the ensemble
is divided by 3400. The dashed curve (b) is for a Å 106 and is divided by

mean value, N) of the sum of errors-squared of the order 170. The curve with the unconnected dots (c) is for a Å 102 and is divided
of

√
2/N , or 12.5% from data set to data set. This corresponds by 1.3. The smoothed fits reduce the input noise by 12.4%, 8.2%, and 4.1%,

respectively. As a is increased (smoothing decreased) both amplitude andto a 6.3% variation in the rms noise for data sets of 127
frequency of the excursions increase, and the rms scatter decreases. Therepoints.
is great variability from one set of noise values to another, but processing

In processing an individual data set we deal with only many sets of noise suggests that each cycle of the quasiperiodic oscillation
one set of noise values, added to the signal values. Any fit tends to remove from the input noise about 2.2 degrees of freedom in

addition to the two that would be removed by forcing the distribution toto the noisy data set will make some accommodation to
be a straight line.the noise, even if the fit is oversmoothed. Thus, adjusting

smoothing parameters so that the rms residual is equal to
the rms added noise results in slight oversmoothing, since
some of the noise is still accommodated by the fit. the ranges of parameters discussed here. However, after the

To adjust global smoothing parameters and to test UP we a’s have been selected by prior computation with artificial
need to estimate the desirable level of the residual scatter data, we do not need more than rough prior knowledge of
for a fit. From artificial data, usually with 127 points, we the noise.
have guessed an effective number of degrees of freedom,

The Noise by Itselfsuch as 7 (3 components: 3 amplitudes, 3 relaxation times,
and signal at infinite time) to use with the number of data Figure 3 shows one sample of noise by itself inverted
points and the known level of the added noise. For both with fixed smoothing coefficient C and without NN, MT, or
artificial and natural data, we can get the residual scatter UP. Even a heavily smoothed fit removes some degrees of
from a multicomponent discrete fit with up to 7 components freedom and reduces the rms residual below the input noise.
(15 parameters) to the relaxation data. This has the advan- Clearly, the less the smoothing the more the fit can maneuver
tage of having no smoothing parameters to choose. Addi- to accommodate the noise. The curve with the most oscilla-
tional components are computed until the best way to reduce tions (solid) reduces the noise by 12.4%, has a Å a0 Å 1010

the sum of residuals is to use a negative component or a (and ap Å ac Å 0), and is divided by 3400 for presentation
component out of the range of the data times. An additional on the scale shown. The dashed curve reduces noise by 8.2%,
component is not used if its use does not reduce the standard has a Å 106, and is divided by 170. The curve with the
deviation of the residuals. Agreement with the known noise unconnected dots reduces noise by 4.1%, has a Å 102, and
of artificial data is very good. is divided by 1.3. The increase of amplitude and frequency

We have two separate uses for a prior knowledge of the of the excursions with decreased smoothing is accompanied
noise level. One is the normalization of the signal discussed by a decrease in the rms scatter. However, these features are
just above Eq. [9] . This affects the smoothing in the compu- highly variable from one set of noise values to another.
tation, but it is not critical with respect to small changes, Numerous sets of noise were processed with a Å 10m for
such as some tens percent. Even a factor of 2 is not drastic. If integer m from 1 to 11, and cycles of quasi-periodic oscilla-
we have no prior knowledge of the noise level, a preliminary tion were counted (somewhat subjective) . When the reduc-
inversion would normally give a more than adequate value tion of noise and cycles of oscillation were averaged for the
for the normalization. The other use for a prior knowledge sets of noise, a straight-line relationship (not shown) was
of the noise is for selecting the a’s. For this, we should found, suggesting that a cycle of oscillation tends to remove

roughly 2.2 degrees of freedom in addition to the 2 thatknow the noise level within from one to three percent for
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would be removed by forcing the distribution to be a straight
line with no oscillation at all.

RESOLUTION

Resolution of Two Lines

A rough criterion for the resolvability of two sharp lines
can be inferred from Eq. [10] of Ref. (15) for the least
maximum absolute error (LMAE) of fit to a rectangular
distribution by two discrete exponential components. An ap-
proximate expression for the LMAE relative to initial signal,
in terms of the line separation factor Y , is

FIG. 4. Marginal resolution from artificial data for sharp lines at 104
ms and 310 ms, a factor of 3. Each of the two lines corresponds to a singleE2 Å

y 2

6.87 / 15.9y / 7.2y 2 ; y Å ( ln Y )2 /12. [11]
exponential with initial signal Å 100. The two peak positions are indicated
by the two pairs of nearly vertical lines. Each of the four remaining curves
shown is computed from a set of artificial data generated from the sameOur ability to resolve the difference between the rectangular
model, but with an independent set of random noise values having unit rms

distribution and the two lines depends on our signal-to-noise amplitude. Inversions were made using UP-NN. One of the four curves
ratio S /N and the density of data points in the region where (mixed dashes) breaks into two peaks at about the right positions, but the
the differences exist. Some rough simulations suggest that residual error of fit relative to the rms value of the its added random noise

is not the lowest for the four curves. The other three (short-dashed curve,the effective region in signal time of significant signal differ-
long-dashed curve, and on-scale solid curve) can be made to give two peaksences corresponding to localized differences in distributions
by increasing the curvature-feedback compliance parameter from ac Å 10

of relaxation times is of the order of a Neper. Thus, we have to ac Å 30, but improvement in fit is not enough to give confidence that
effectively 1/Dq points helping statistically to determine the there are separate peaks. The two peaks are always resolved (with ac Å
difference between models and reducing the required S /N 10) when each line amplitude is increased to 250 (not shown) instead of

100. The results were substantially the same for two Gaussian lines (notby a factor of
√
Dq . We then get a required S /N for resolution

shown) meeting at two half-widths from their centers.of two roughly equal lines,

S /N ™
√
Dq /E2 . [12]

results (not shown) were substantially identical to those for
the pairs of sharp lines.

For Y Å 3 we get E2 Å 0.0012. If 127 data points extend in
equal q-steps from 0.4 ms to 10 s, Dq Å 0.080, and S /N É Linewidth Due to Noise
240 is a rough boundary for marginal resolution.

When noise is present, even a single-exponential signalFigure 4 shows the UP-NN computations (with a0 Å
can give a distribution with finite width. Equation [6] of1000, ap Å 50, ac Å 10) for four sets of artificial data with
Ref. (15) gives E1 , the LMAE for fit to a narrow rectangulardifferent selections of random noise with unit rms amplitude
distribution by a single line, analogous to Eq. [11] for twoand with sharp lines for signal amplitude 100 each and a
lines,factor of 3 apart in relaxation time. Thus, S /NÅ 200, slightly

less than the value 240 computed above for marginal resolu-
E1 Å 0.1086 w 2 , [13]tion. We note that three of the four curves do not ‘‘resolve’’

the two lines. The curve with the two peaks does not have
where w is the half-width of the line in Np. In analogy withthe lowest fit error relative to its added noise.
Eq. [12], we account for the density of data points by lettingThe above computations were repeated with ac Å 30 in-
S /N Å

√
Dq /E1 , givingstead of the ‘‘normal’’ 10. Here, each of the four curves

gave two peaks. However, as before, the improvement in fit
did not warrant the distinction between two peaks and a w Å 3.0 D 1/4

q /
√

S /N . [14]
continuous distribution. The above were done also with addi-
tional sets of artificial data (not shown) with each peak of With S /N Å 100 for a distribution consisting of a single line

(as for each line of Fig. 4) and with the input data pointamplitude 250 instead of 100. In this case S /N Å 500, which
is well over 240, rather than slightly less. For these data the spacing Dq Å 0.080 (127 points over a range of a factor of

25,000), w Å 0.16 Np. Thus, the line half-width is aboutnormal a’s gave the two resolved peaks in all cases. Still
another variation used pairs of identical Gaussian distribu- twice the output point spacing, Dq Å 0.093 (110 output

points over a factor of 25,000). Increasing of S /N to 400tions meeting at two half-widths from their centers. The
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would give w É Dq for the above parameters. These values
of w apply to isolated lines ‘‘protected’’ by either NN or
MT, and the value of S /N applies to the line itself, not
including other features of the distribution.

Significance Criteria for Improvement in Fit

As we have seen, it is possible to have quite different
distributions adequately fitting a set of relaxation data. How-
ever, it is frequently useful to compare two or more solutions
with differences due to the application of an additional con-
straint or of a change in a smoothing parameter, with the
changes limited to a small range of relaxation times. It is
not easy to decide by comparing fit errors alone whether FIG. 5. Marginal false resolution from artificial data for a rectangular
one solution is significantly better than another. One problem distribution. The solid curve is the input rectangular distribution (interpo-

lated) with width a factor of 7, which can be well approximated by twois that a change primarily affecting one region, such as the
(not precisely equal) lines a factor of 3 apart, as for the two lines of thefoot of a peak, may also unintentionally and inconspicuously
model for Fig. 4. The area in the peak is 200, just as for the sum of thechange the fit elsewhere, possible at very short times. How-
two lines of Fig. 4, and there is again unit rms noise. The curve with the

ever, we can estimate a minimum cost (13, 15) to warrant long dashes is UP-NN with the curvature feedback parameter ac Å 10
rejecting a restriction. (normal) , and the corresponding UP-MT (not shown) is substantially iden-

tical. The curve with two peaks, shown by the short dashes, is UP-NN withIf a localized change in a distribution affects the corre-
ac increased to 30, the value that was required to get two separate peakssponding decay curve over about a Neper, as discussed
for all curves of Fig. 4.above, a change is not significant unless it affects the sum

of errors-squared more than the probable effect of a different
set of random noise values over this range. If there are
enough points in this interval, the variability of the noise- are rounded, but the fit is good. If we increase ac from 10

to 30, we resolve two false peaks, shown by the short-dashedsquared is by a factor of about
√
2Dq , where 1/Dq is the

curves, and improve the fit by 1% of the noise value. Asnumber of points per Np. This factor times the number of
mentioned before, this improvement is roughly equivalentpoints per Np is the variability,

√
2/Dq , in the expected sum

to the removal of 2.2 degrees of freedom to accommodateof noise-squared, N (with unit rms noise) . This is a relative
noise by introducing a cycle of oscillation.change of

√
2/Dq /N in the sum of errors-squared, giving a

relative change in the rms fit error of half this amount,
Resolution of Lines on a Pedestal

Although it was shown that UP can greatly decrease the1/(N
√
2Dq) . [15]

reliance on NN, it does not by itself completely prevent
undershoot and line broadening in the immediate vicinity ofWith N Å 127 and Dq Å 0.080, Eq. [15] gives 2.0% as the
a sharp feature in a distribution. The resolution criterion ofrelative increase in rms fit error for marginal significance of
Eqs. [11], [12] does not apply unless we know that thethe extra cost of a constraint. This should be in addition to
choice is between either two sharp lines by themselves orthe cost of the roughly 2.2 fewer degrees of freedom for
else a compact distribution, such as rectangular or Gaussian,accommodating the noise if a cycle of oscillation is pre-
by itself. The solid curves in Fig. 6 show the input distribu-vented by a constraint.
tion for a pair of sharp lines a factor of 3 apart and on a
wide pedestal. The short-dashed curve in the lower view isFalse Resolution from a Rectangular Distribution
UP-NN for lines in the model with amplitudes 250 each
and with unit noise. The mixed-dash curve is the same forThe model for a set of artificial data is shown by the solid

curve in Fig. 5. A rectangular distribution covers relaxation amplitudes 500 each (and with a different noise vector, again
with unit rms amplitude). In each case there is substantialtimes over a factor of 7, with shape slightly affected by the

necessary interpolation. As can be determined from Eq. [11] undershoot below the pedestal, and the lines are not resolved.
The undershoot is greater for the larger amplitude. If weof Ref. (15) , a rectangular distribution over a factor of 7

can be well approximated by two (not quite equal) lines increase the amplitude further, so that the undershoot is inter-
cepted by NN (not shown), then the lines become resolved.spaced a factor of 3, as for the lines of Fig. 4. The integrated

signal for the model is 200, and unit noise is added, as for The unconnected plus signs (/) are for UP-MT, which
avoids the undershoot but which, by its nature, does notFig. 4. The line with the long dashes shows the UP-NN

distribution computed with the normal parameters. The ends permit two peaks. The upper view shows the input distribu-
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or may not be appropriate for a data set for an unknown
sample. In the latter case we may be able to judge the appro-
priateness of these constraints by the cost in terms of fit
error.

Areas of Overlapping Peaks and of Undershoot

When, with UP-NN processing with normal parameters,
two peaks appear separated by either a deep valley or a
few points of baseline, it is clear that the phenomenon of
undershoot has enhanced the valley or even brought the
distribution down to the baseline for the few points. As
computations with artificial data for pairs of Gaussian distri-
bution with various combinations of heights, widths, and
separations have shown, a few points of baseline in a com-
puted distribution do not mean that the ‘‘real’’ peaks do not
overlap. However, when the peaks are more than marginally
resolved, according to the criterion of excess cost of the MT
constraint, the areas of the peaks, as shown on cumulative
distributions, are about right even when there is considerable
disparity between the peaks. As always, the accuracy for a
very small peak is limited. When UP is run without NN or
MT on isolated peaks (or with NN for a peak on a pedestal,
as discussed just above) the integrated area of the undershoot
is usually between 1% and 5% that of the peak. This appears
to be about the same for any value of S /N that permits a
sharp peak. However, this percentage varies erratically with
changes in DQ or positions of the output points and with
independent samples of the noise.

FIG. 6. Nonresolution of two single-line peaks, a factor of 3 apart, on
a pedestal. Artificial data were generated for a model in which the area of EXAMPLES
the pedestal is 1000, that of each peak is 250, and unit rms noise is added.
Without the pedestal these peaks are easily resolved by UP-NN with normal Biological Tissues
parameters. The solid curve is the input distribution in both displays. The
short-dashed curve in the lower display (b) is computed by UP-NN. The Figure 7 shows relaxation curves for a tumor-free portion
unconnected plus signs (/) in (b) are for UP-MT for the same data. By of a length of human intestine resected because of cancer
its nature, MT cannot resolve the two peaks, but it does prevent the under-

(16) . The solid curve is for UP-NN, showing a peak withshoot at the sides of the wide computed peak. The mixed-dash curve in the
half-width 0.21 Np (measured at e01/2 height of peak) andlower display is UP-NN for a model with the same pedestal but with each

peak having area 500 instead of 250 and with a different selection of random with a tail representing about 24% of the signal. The long-
noise, still with unit amplitude. The two peaks are still not resolved. If the dashed curve is with fixed a Å 106 with NN. The half-width
signal is increased (with noise constant) until the undershoot goes negative of the peak is doubled, and a single satellite peak is shown
and is intercepted by NN, then the peaks become resolved (not shown).

representing 14% of the signal. The rms error of fit is 3.1%The upper view (a) shows the input distribution (solid curve) , and the
higher than for UP-NN, an amount which is slightly largerdashed line is UP with a hybrid MT-NN, in which MT is applied before

the first and after the second peak, while NN is applied between peaks. than the rough 2.0% found above to be marginally signifi-
This bimodal constraint restores resolution of the lines. cant. The curve with the unconnected plotted points is also

for fixed a Å 106 but with MT instead of NN, and the
cost of eliminating the extra peak is about 0.3%, which is
insignificant.tion (solid) and a UP solution with hybrid MT-NN con-

straints, where MT is applied before the first peak and after The short-dashed curve in Fig. 7 is for fixed a Å 107 with
NN and shows two satellite peaks. The error of fit is 0.4%the second peak and where NN is applied between peaks.

The peaks are now resolved and narrow, much as they are higher (insignificant) than for UP-NN, and the half-width
is 1.81 that of UP-NN. This appears to be an example ofin the absence of the pedestal. The hybrid MT-NN constraint

supplies information to permit identification of the sharp the case where a fixed smoothing parameter oversmoothes
a narrow peak and undersmoothes a broader feature, whetherpeaks much as NN does in the absence of the pedestal. In

this example these constraints are appropriate, but they may the ‘‘real’’ feature is a tail or a smaller and wider additional
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Ceramic Technology

Figure 8 shows distributions of relaxation times computed
by UP-NN for ceramic samples which had been fired at
9507C (a), 10007C (b), 10507C (c), 11007C (d), and
11507C (e); cooled; and saturated with water (17) . The
progression is to longer relaxation times with higher temper-
atures. At the lowest temperature the peak extends to 10 ms
or slightly less. At higher temperatures, except for the high-
est, a tail still extends to a little below 10 ms, with the tails
becoming smaller with increasing temperature. The UP-NN
processing preserves even the very small tails without break-
ing them up into separate peaks. For these samples we have
no a priori reason to expect separate peaks. At higher firing
temperatures pores become larger and surfaces become
smoother, leading to decreased surface-to-volume ratio and
giving the longer relaxation times observed. As temperature
is increased, sintering appears to eliminate the very small
pores that contribute to the tail.

Porous Oilfield Sandstones

Figure 9 shows distributions of relaxation times for four
oilfield sandstone samples which are relatively free of clayFIG. 7. Tissue from human intestine. The sample is a noncancerous
minerals and which are saturated with brine. These samplespiece of tissue from a length of intestine resected because of cancer. The

solid curve is by UP-NN and consists of a peak and a tail. The short-dashed appear homogeneous to the eye, and porosities range from
line, with two satellite peaks, is computed with constant a Å 107 and NN, 3% to 16%. Each of the four distributions has significant
with rms error of fit an insignificant 0.4% higher. The long-dashed curve, contributions to the signal for relaxation times ranging over
with the single satellite peak, is for fixed a Å 106 and NN. The rms error

a factor of 1000. Each of the four distributions fits the dataof fit is 3.1% more than for UP-NN, slightly over the approximate 2.0%
with rms scatter within about 1% that of the discrete multiex-for marginal significance. The unconnected plotted points are for a Å 106

with MT, and the cost of this constraint is insignificant. These relaxation ponential fits discussed under Coefficients, Artificial Data,
data cannot by themselves tell us whether the tail is connected to the main and Noise. This guarantees that the peaks have not been
peak or is one or more separate populations clearly separated in relaxation broadened by oversmoothing for the two distributions that
time from the peak. UP appears to give the least division into separate

have peaks, and it can be seen that all the curves are smoothpopulations consistent with the data.

peak. The fixed smoothing parameter is a compromise be-
tween those needed for the two features, incurring a penalty
for widening the peak and compensating for this by the
oscillations in the broader feature, as discussed in connection
with Fig. 3. The larger satellite peak represents 13% of the
signal, and the smaller represents about 3.5%, with a sum
of 16.5% of the signal separate from the main peak. It may
be that broadening the peak (with respect to UP-NN) results
in the inclusion of several percent of the tail (or second
peak) in the main peak.

It should be emphasized that this set of relaxation data
cannot by itself provide a firm choice between a tail and a
second peak. If we have additional information, or if we FIG. 8. Ceramic samples fired at different temperatures. Samples of

the starting material for ceramics (so-called ‘‘green bodies’’) were fired,make the hypothesis, that the distribution consists of a com-
cooled, and saturated with water. Then T1 relaxation data were taken, andpact peak without any tail plus a wider additional peak, we
distributions of relaxation times were computed by UP-NN and shown for

can make an interpretation from any of the above displays. the sequence of temperatures, 9507C (a), 10007C (b), 10507C (c), 11007C
However, accuracy is limited, as the above different values (d), and 11507C (e). Note the progressive loss with increased firing temper-

ature of the tails at short relaxation times.of fractions of the total signal outside the main peak suggest.
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ration between the two largest peaks. The width of the largest
peak is substantially reduced for these two distributions, as
can be seen in the inset figure showing the various represen-
tations of the largest peak. Cumulative distributions (not
shown) for the computed distributions for the artificial data
give the signals corresponding to the large peak (71%) to
within 3.5% of the total signal.

As always, there is the possibility that one might have
information in addition to that from the relaxation curve.
For instance, if one knew a priori that the measured relax-
ation curve represented the sum of three Gaussian distribu-
tions, the amplitudes and widths could be estimated reason-
ably well from the relaxation data. However, in the case of
the sandstone sample for Fig. 10, we do not have any con-

FIG. 9. Distributions computed using UP-NN from experimental NMR
vincing basis for a two- or three-compartment model,T1 relaxation data for four visually homogeneous oilfield sandstone samples
Gaussian or otherwise.saturated with brine. The four samples were chosen all to have wide ranges

of relaxation times but to exhibit quite different relaxation time distributions.
Sample (a) has only 3% porosity and less than 0.1 mD permeability to DISCUSSION AND CONCLUSIONS
fluid flow. (A Darcy is about a (mm)2 and is a fairly large permeability for
oil production; a mD is a small value.) Curves (b) , (c) , and (d) all have The basic objective of UP inversion of relaxation curves is
porosities in the 13–16% range. Permeability is not known for (b); it is

to give appropriate amounts of detail to both sharp and broad14 mD for (c) and 860 mD for (d) . Long relaxation times correlate with
features, even when they appear on the same distribution ofhigh permeabilities. Note that all these curves are unimodal, as are most,

but not all, distributions we have produced for brine-saturated sandstones relaxation times. We have used an iterative procedure to imple-
that are visually homogeneous.

and unimodal. The good fit shows that additional detail is
not needed for these data sets. It does not show that more
complex solutions are wrong, and it does not show that data
for the same samples taken with higher S /N or with the
averaging of many signals could not require more detail.

Figure 10 shows computed distributions for a brine-satu-
rated sandstone sample that has either a satellite peak or a
knee several times as broad as the main peak and represent-
ing of the order of 20% of the initial signal. In turn, a tail
or else still broader peak, representing about 10% of the
signal, extends to still shorter times. The inset figure shows
the region of the main peak. The diagonal squares are for

FIG. 10. Marginal resolution of a satellite peak (or shoulder) for anthe UP-NN computation, and the dashed line without plotted
oilfield sandstone saturated with brine. The diagonal squares are computedpoints is for UP-MT. The cost of the MT constraint was
by using UP-NN with the experimental relaxation data for the sandstone,2.4% of the rms noise level, which is marginal for resolving
and the dashed curve without plotted points is computed by using UP-MT.

a separate peak from the main peak. The cost of the MT constraint is 2.4% of the noise level, which, for the
A solution (not shown) with UP and with MT before the parameters involved, is marginal for identifying a resolved peak rather than

a knee on the higher peak. The circles represent an input model for simula-middle peak and after the highest peak, and with NN between
tion of the computed distribution. The model consists of three Gaussians:the two highest peaks, costs only 0.5% over UP-NN in addi-
8.3% at 10 ms with half-width 0.8 Np, 20.6% at 85 ms with half-width 0.4tional scatter. Thus, the cost of preventing a minimum be-
Np, and 71.1% at 380 ms with half-width 0.1 Np. The S /N is 1000 for the

tween the two smallest peaks is not even close to significant. sandstone data and for the artificial data. Distributions computed by UP-
Rough simulations were made by means of three Gaussi- NN are shown by solid lines without plotted points for four sets of artificial

data, all for the above model but with different selections of random noiseans as identified in the caption for Fig. 10. The same model
having the same rms value. In both the main figure and the inset, the arrowswas used with four selections of random noise. The distribu-
identify the one of these four distributions having the sharpest main peak,tions computed by UP-NN from the four sets of artificial
which is sharper than that of the model for the artificial data and sharper

data are shown by solid lines without plotted points. Two than that computed from the experimental data. It is illustrated that different
of these curves have substantial minima between the two selections of random noise can lead to strikingly different computed distri-

butions and that noise can narrow a line as well as broaden it.smallest peaks, and the same two have greatly reduced sepa-
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ment variable smoothing of the computed distributions, so that in Fig. 2, only slight undershoot is obtained with UP without
NN for that set of good data. When one set of bad datathe smoothing penalty is roughly uniform over the sharp and

broad features. This permits the computation of sharp lines was processed by UP-NN, two spurious sharp lines were
produced, but the nonrandom residuals gave adequate warn-without broadening by oversmoothing, and, in the same distri-
ing, and UP without NN gave very large negative peaks andbution, a broad feature can be smoothed sufficiently that it is
positive peaks.not broken into unnecessary separate peaks.

In some combinations of sharp and broad features UPThere can be different objectives in the interpretation of
may require many iterations, and termination criteria otherdistributions of exponentials. One important objective can be
than convergence to infinitesimal differences between solu-to know whether relaxation data (whether NMR or other) can
tions may be necessary. Computing time can be substantialreliably separate the source of signal into two or more popula-
in the above circumstances, especially when output pointstions. Examples could be oil and water in a porous rock, water
more closely spaced than customary are used, as is usefulin macropores and micropores in a rock having grains with
to show the maximum amount of valid detail. However,internal porosity, tissue reached and not reached by contrast
these are just the circumstances where the variable smooth-agent in biological systems, etc. Obviously, the existence of
ing feature of UP is most useful. With a few controls appliedseparate physical populations in a sample does not guarantee
to the iterative cycle, UP has functioned well, without manip-different or nonoverlapping relaxation times. In any case, there
ulation of parameters, on a very large variety of measuredare important interpretation objectives where we wish to know
and artificial data.if relaxation data require a significantly bimodal or multimodal

distribution of relaxation times, suggesting separate popula-
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